Frequently Asked Questions

Full FAQ List by Topic

EMSE EEG / MEG analysis software (8)

EMSE’s Development Plan emerges from three main streams. First, we listen to your needs and requests (e.g., you might show us what you want during a remote technical/scientific support session). Second, we periodically update and upgrade existing features (e.g., update of boundary element head models; upgrade from 32-bit to 64-bit code). Third, we’re envisioning an integrative role for EMSE in the larger field of human neurophysiology and neuroimaging, so that: (a) EMSE shall perform live analysis and automatic archiving during data acquisition; and (b) EMSE shall cooperate with other tools in an ecosystem based on FAIR (Findable, Accessible, Interoperable, Reusable) principles.

EMSE is developed by Cortech Solutions. We are an agile team with more than 50 years combined experience in the field. Principal developers are Mark Pflieger and Li Gao, who have worked on the EMSE project for 17+ years and 21+ years, respectively. Richard Greenblatt initiated the EMSE project in the early 1990s with roots from the MEG community.

EMSE reads all major research EEG and MEG data formats.

No. EMSE is a self-contained graphical program written in C++ “under the hood” for efficiency. To optimize the speed of standard matrix and math operations, EMSE leverages the Intel® Math Kernel Library.

No, EMSE is modular. The ERP Bundle (Data Editor plus Visualizer) is a powerful and affordable package for discovering and confirming space-time-frequency phenomena at the scalp level, with integrated nonparametric statistics. The Basic Source Estimation Bundle adds the Source Estimator module for brain level modeling. The Locator module digitizes electrode locations, which may be co-registered with MRI using MR Viewer. The Image Processor module can segment head tissues for constructing individual cortex and volume conductor models.

If EEG/ERP is a new addition to your lab, you can use EMSE to rapidly master all of the steps that can lead you to discover and visualize new phenomena in your experimental data. Have you already identified phenomena at the scalp? Then you can use source reconstruction and source signal estimation tools in EMSE to understand where and when these phenomena arise in the cortex. Going further, if you have participant MRIs, then you can use EMSE to sort out meaningful individual differences from incidental differences that derive from personal cortical folding patterns. In all cases, we can remotely assist with the steps.

EMSE is great for helping you, first, to identify robust space-time-frequency phenomena in your EEG or MEG data, and then to interpret those phenomena in brain space by constructing source models, by estimating regional activity, and by deriving inter-regional connectivities. EMSE can use MRI data to construct realistic volume conductor models of the head. Importantly, EMSE reproducibly automates and documents your analysis workflows, including: (a) signal processing pipelines; (b) experimental event logic pipelines; (c) event-related component measurements; and (d) nonparametric statistical hypothesis testing. EMSE is a professionally supported Windows application. We can remotely assist your data analysis process.

EMSE stands for ElectroMagnetic Source Estimation (and we say “MC”).

Load More