Association for Research in Otolaryngology

Loading Map....

Date/Time
Date(s) - 02/10/2018 - 02/14/2018
All Day

Location
Manchester Grand Hyatt Hotel

Categories

Download iCal | Add to Google Calendar

Association for Research in Otolaryngology

Photo credit: https://precollege.ucdavis.edu/mind-brain/

We look forward to participating in this year’s ARO meeting.  We are pleased to count many ARO members among our customers. If you want to meet with us during ARO, drop us a line to let us know how we can help you.

The Association for Research in Otolaryngology is an international association of scientists and physicians dedicated to scientific exploration among all of the disciplines in the field of otolaryngology. Research efforts involve the ear, nose, head, neck and related functions including hearing, balance, speech, taste and smell among others. A wide range of scientific approaches is represented including biochemical, physiological, behavioral, developmental, and evolutionary.

Some of the most interesting work we have seen of late involves recording EEG and AEP from patients with cochlear implants 1) for the purpose of using evoked responses as an objective basis for tuning the implant, and 2) as a window into cortical plasticity as patients’ brains “learn” to process auditory information for the first time. Several good examples of this work are in the publication list below, and some additional examples are discussed in the abstracts in the program book from the 2017 Conference on Implantable Auditory Prostheses.

Here are some of the products that may be of interest to ARO2018 attendees:

Our Products in Otolaryngology Research

Roger, C., Hasbroucq, T., Rabat, A., Vidal, F., & Burle, B. (2009). Neurophysics of temporal discrimination in the rat: a mismatch negativity study. Psychophysiology, 46(5), 1028–1032.
Ruhnau, P., Herrmann, B., & Schröger, E. (2012). Finding the right control: the mismatch negativity under investigation. Clinical Neurophysiology, 123(3), 507–512.
Schmidt, A., Diaconescu, A. O., Kometer, M., Friston, K. J., Stephan, K. E., & Vollenweider, F. X. (2012). Modeling ketamine effects on synaptic plasticity during the mismatch negativity. Cerebral Cortex, 23(10), 2394–2406.
Jahshan, C., Wynn, J. K., Mathis, K. I., Altshuler, L. L., Glahn, D. C., & Green, M. F. (2012). Cross-diagnostic comparison of duration mismatch negativity and P3a in bipolar disorder and schizophrenia. Bipolar Disorders, 14(3), 239–248.
Franken, I. H., Nijs, I., & Van Strien, J. W. (2005). Impulsivity affects mismatch negativity (MMN) measures of preattentive auditory processing. Biological Psychology, 70(3), 161–167.
Vuust, P., Brattico, E., Glerean, E., Seppänen, M., Pakarinen, S., Tervaniemi, M., & Näätänen, R. (2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 47(9), 1091–1098.
Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012). The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432–1443.
Wienberg, M., Glenthoj, B. Y., Jensen, K. S., & Oranje, B. (2010). A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers. Journal of Psychopharmacology, 24(8), 1183–1192.
Moberget, T., Karns, C. M., Deouell, L. Y., Lindgren, M., Knight, R. T., & Ivry, R. B. (2008). Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia, 46(10), 2569–2579.
Altman, J. A., Vaitulevich, S. P., Shestopalova, L. B., & Petropavlovskaia, E. A. (2010). How does mismatch negativity reflect auditory motion? Hearing Research, 268(1), 194–201.
Stefanics, G., Csukly, G., Komlósi, S., Czobor, P., & Czigler, I. (2012). Processing of unattended facial emotions: a visual mismatch negativity study. Neuroimage, 59(3), 3042–3049.
Stekelenburg, J. J., Vroomen, J., & de Gelder, B. (2004). Illusory sound shifts induced by the ventriloquist illusion evoke the mismatch negativity. Neuroscience Letters, 357(3), 163–166.
Schmidt, A., Bachmann, R., Kometer, M., Csomor, P. A., Stephan, K. E., Seifritz, E., & Vollenweider, F. X. (2012). Mismatch negativity encoding of prediction errors predicts S-ketamine-induced cognitive impairments. Neuropsychopharmacology, 37(4), 865–875.
Deouell, L. Y., Parnes, A., Pickard, N., & Knight, R. T. (2006). Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. European Journal of Neuroscience, 24(5), 1488–1494.
Kujala, T., Kuuluvainen, S., Saalasti, S., Jansson-Verkasalo, E., Von Wendt, L., & Lepistö, T. (2010). Speech-feature discrimination in children with Asperger syndrome as determined with the multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 121(9), 1410–1419.
Wijnen, V. J. M., Van Boxtel, G. J. M., Eilander, H. J., & De Gelder, B. (2007). Mismatch negativity predicts recovery from the vegetative state. Clinical Neurophysiology, 118(3), 597–605.
Magno, E., Yeap, S., Thakore, J. H., Garavan, H., De Sanctis, P., & Foxe, J. J. (2008). Are auditory-evoked frequency and duration mismatch negativity deficits endophenotypic for schizophrenia? High-density electrical mapping in clinically unaffected first-degree relatives and first-episode and chronic schizophrenia. Biological Psychiatry, 64(5), 385–391.
Friedman, T., Sehatpour, P., Dias, E., Perrin, M., & Javitt, D. C. (2012). Differential relationships of mismatch negativity and visual p1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biological Psychiatry, 71(6), 521–529.
Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J., & Stephan, K. E. (2013). Modelling trial-by-trial changes in the mismatch negativity. PLoS Computational Biology, 9(2), e1002911.
Kirmse, U., Ylinen, S., Tervaniemi, M., Vainio, M., Schröger, E., & Jacobsen, T. (2008). Modulation of the mismatch negativity (MMN) to vowel duration changes in native speakers of Finnish and German as a result of language experience. International Journal of Psychophysiology, 67(2), 131–143.
Presacco, A., Innes-Brown, H., Goupell, M. J., & Anderson, S. (2017). Effects of stimulus duration on event-related potentials recorded from cochlear-implant users. Ear and Hearing, 38(6), e389–e393.
Lehmann, A., Skoe, E., Moreau, P., Peretz, I., & Kraus, N. (2015). Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia. European Journal of Neuroscience, 42(1), 1644–1650.
Nozaradan, S., Schönwiesner, M., Caron-Desrochers, L., & Lehmann, A. (2016). Enhanced brainstem and cortical encoding of sound during synchronized movement. Neuroimage, 142, 231–240.
Schönwiesner, M., Novitski, N., Pakarinen, S., Carlson, S., Tervaniemi, M., & Näätänen, R. (2007). Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology, 97(3), 2075–2082.
Moberly, A. C., Bhat, J., & Shahin, A. J. (2016). Acoustic cue weighting by adults with cochlear implants: A mismatch negativity study. Ear and Hearing, 37(4), 465–472.
Habicht, J., Finke, M., & Neher, T. (2018). Auditory acclimatization to bilateral hearing aids: Effects on sentence-in-noise processing times and speech-evoked potentials. Ear and Hearing, 39(1), 161–171.
Schoof, T., & Rosen, S. (2016). The role of age-related declines in subcortical auditory processing in speech perception in noise. Journal of the Association for Research in Otolaryngology, 17(5), 441–460.
Carcagno, S., Plack, C. J., Portron, A., Semal, C., & Demany, L. (2014). The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response. Journal of the Association for Research in Otolaryngology, 15(4), 621–630.
Ahmed, D. G., Paquette, S., Zeitouni, A., & Lehmann, A. (2017). Neural Processing of Musical and Vocal Emotions Through Cochlear Implants Simulation. Clinical EEG and Neuroscience, 1550059417733386.
Llamas, G. E., Epp, B., & Dau, T. (2015). Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE). 37th Annual MidWinter Meeting of the Association for Research in Otolaryngology.