EMSE is a suite of advanced, powerful, and useable software tools to measure, describe, and visualize human brain dynamics, for use by researchers and clinicians worldwide. We specialize in multimodal source estimation techniques, enabling the researcher to combine EEG and MRI datasets to better answer where things are happening in the brain, and when things change.

Conventional neuroimaging (for example magnetic resonance imaging, or MRI) can answer the where question, but not the when question. Electroencephalography (EEG) and the closely allied Event-Related Potentials (ERP’s) can tell you when something happened with an accuracy of thousandths of a second, but isn’t very good at the where questions. EMSE combines MRI and EEG to answer both when and where in a way that neither method can answer alone. We call this process multimodal dynamic functional brain imaging or source estimation.

EMSE Modules



When used together with Polhemus™ digitizing hardware, LOCATOR allows you to measure accurately electrode locations an external head shape in 3 dimensions. These data may then be used for MRI coregistration and more accurate source estimation. LOCATOR currently supports three Polhemus products: ISOTRAK, FASTRAK, and PATRIOT.


Data Editor

The EMSE Suite DATA EDITOR module may be used as a stand-alone program to view, analyze, filter and transform EEG and MEG time series data, and to select intervals or events for further analysis, including topographic mapping, spatial components analysis and wavelet decomposition.


Source Estimator

EMSE Suite SOURCE ESTIMATOR module may be used for discrete or distributed dipole source analysis from EEG or MEG data which has been provided by the DATA EDITOR module. Three shell spherical models or realistic head models (using data from the IMAGE PROCESSOR module) may be used for field calculations. Source estimates may be output to MR VIEWER for MRI overlay.


MR Viewer

MR VIEWER displays magnetic resonance and other images, with specialized features designed for the overlay of electromagnetic source estimation and other functional imaging data. Seeded dipoles may be obtained (e.g. from fMRI data) for use with SOURCE ESTIMATOR.


Image Processor

Starting with a volumetric dataset from the MR VIEWER base module, IMAGE PROCESSOR tools support segmentation, boundary mesh generation, and cortical unfolding. The output may be made available to VISUALIZER for 3D rendering, or to SOURCE ESTIMATOR for realistic headshape modeling and cortical surface restriction.



Use VISUALIZER to obtain and view 3D rendered images, combining data from several modalities, including topographic mapping, MRI data and electromagnetic source analysis.


EMSE EEG / MEG analysis software (8)

EMSE’s Development Plan emerges from three main streams. First, we listen to your needs and requests (e.g., you might show us what you want during a remote technical/scientific support session). Second, we periodically update and upgrade existing features (e.g., update of boundary element head models; upgrade from 32-bit to 64-bit code). Third, we’re envisioning an integrative role for EMSE in the larger field of human neurophysiology and neuroimaging, so that: (a) EMSE shall perform live analysis and automatic archiving during data acquisition; and (b) EMSE shall cooperate with other tools in an ecosystem based on FAIR (Findable, Accessible, Interoperable, Reusable) principles.

EMSE is developed by Cortech Solutions. We are an agile team with more than 50 years combined experience in the field. Principal developers are Mark Pflieger and Li Gao, who have worked on the EMSE project for 17+ years and 21+ years, respectively. Richard Greenblatt initiated the EMSE project in the early 1990s with roots from the MEG community.

EMSE reads all major research EEG and MEG data formats.

No. EMSE is a self-contained graphical program written in C++ “under the hood” for efficiency. To optimize the speed of standard matrix and math operations, EMSE leverages the Intel® Math Kernel Library.

No, EMSE is modular. The ERP Bundle (Data Editor plus Visualizer) is a powerful and affordable package for discovering and confirming space-time-frequency phenomena at the scalp level, with integrated nonparametric statistics. The Basic Source Estimation Bundle adds the Source Estimator module for brain level modeling. The Locator module digitizes electrode locations, which may be co-registered with MRI using MR Viewer. The Image Processor module can segment head tissues for constructing individual cortex and volume conductor models.

If EEG/ERP is a new addition to your lab, you can use EMSE to rapidly master all of the steps that can lead you to discover and visualize new phenomena in your experimental data. Have you already identified phenomena at the scalp? Then you can use source reconstruction and source signal estimation tools in EMSE to understand where and when these phenomena arise in the cortex. Going further, if you have participant MRIs, then you can use EMSE to sort out meaningful individual differences from incidental differences that derive from personal cortical folding patterns. In all cases, we can remotely assist with the steps.

EMSE is great for helping you, first, to identify robust space-time-frequency phenomena in your EEG or MEG data, and then to interpret those phenomena in brain space by constructing source models, by estimating regional activity, and by deriving inter-regional connectivities. EMSE can use MRI data to construct realistic volume conductor models of the head. Importantly, EMSE reproducibly automates and documents your analysis workflows, including: (a) signal processing pipelines; (b) experimental event logic pipelines; (c) event-related component measurements; and (d) nonparametric statistical hypothesis testing. EMSE is a professionally supported Windows application. We can remotely assist your data analysis process.

EMSE stands for ElectroMagnetic Source Estimation (and we say “MC”).